壓縮空氣儲(chǔ)能具有規(guī)模大、成本低、效率高、環(huán)境友好等優(yōu)點(diǎn),是最具發(fā)展?jié)摿Φ拇笠?guī)模儲(chǔ)能技術(shù)之一。“十四五”規(guī)劃和2035年遠(yuǎn)景目標(biāo)綱要中,明確提出要實(shí)施電化學(xué)儲(chǔ)能、壓縮空氣儲(chǔ)能、飛輪儲(chǔ)能等儲(chǔ)能示范項(xiàng)目。
近日,中國科學(xué)院工程熱物理研究所儲(chǔ)能研發(fā)中心采用有限時(shí)間熱力學(xué)方法,首次建立了壓縮空氣儲(chǔ)能系統(tǒng)的有限時(shí)間熱力學(xué)模型。該模型充分考慮熱力過程中有限時(shí)間和有限尺寸對(duì)系統(tǒng)性能的影響,實(shí)現(xiàn)了時(shí)間項(xiàng)和尺寸項(xiàng)的解耦,在解析模型中可以清晰地看到壓縮空氣儲(chǔ)能系統(tǒng)儲(chǔ)/釋能時(shí)間、關(guān)鍵設(shè)備尺寸和其他部件性能參數(shù)對(duì)系統(tǒng)效率的影響規(guī)律。
基于該模型,研究首次揭示了有限時(shí)間和有限尺寸在壓縮空氣儲(chǔ)能系統(tǒng)中的最佳匹配關(guān)系。該研究為壓縮空氣儲(chǔ)能系統(tǒng)的總體優(yōu)化設(shè)計(jì)提供了理論支撐。
相關(guān)研究成果發(fā)表在Renewable and Sustainable Energy Reviews(2021, 138: 110656)上。
有限時(shí)間熱力學(xué)起源于1957年,Curzon和Ahlborn于1970年提出了外部不可逆循環(huán)概念并得到更貼近實(shí)際的熱機(jī)效率后,有限時(shí)間熱力學(xué)得到發(fā)展,目前已廣泛應(yīng)用于熱機(jī)、制冷和熱泵等傳統(tǒng)熱力學(xué)系統(tǒng)分析優(yōu)化中。相對(duì)于經(jīng)典熱力學(xué)以可逆過程作為研究對(duì)象,使研究結(jié)果與實(shí)際存在較大偏差,有限時(shí)間熱力學(xué)作為經(jīng)典熱力學(xué)的延伸,考慮有限時(shí)間和有限尺寸下的熱力學(xué)行為,將熱力學(xué)、流體力學(xué)和傳熱學(xué)等統(tǒng)一考慮,建立更貼近實(shí)際的熱力學(xué)模型,并利用優(yōu)化策略,揭示更貼近實(shí)際的熱力學(xué)規(guī)律并獲得熱力系統(tǒng)/過程最佳設(shè)計(jì)/運(yùn)行方式。
對(duì)于壓縮空氣儲(chǔ)能系統(tǒng),儲(chǔ)能過程和釋放過程分時(shí)運(yùn)行,且儲(chǔ)能過程和釋能過程存在總空氣質(zhì)量守恒和蓄熱能量守恒的約束,因而壓縮空氣儲(chǔ)能系統(tǒng)與時(shí)間存在強(qiáng)相關(guān)關(guān)系;壓縮空氣處于變工況及非穩(wěn)態(tài)運(yùn)行,且各部件參數(shù)強(qiáng)烈耦合,使系統(tǒng)各部件及系統(tǒng)整體性能也與時(shí)間強(qiáng)烈相關(guān)。壓縮空氣儲(chǔ)能系統(tǒng)存在較多容積和換熱設(shè)備,其性能同樣與系統(tǒng)部件的有限尺寸強(qiáng)烈相關(guān)。因此,有限時(shí)間熱力學(xué)可作為高精度分析和優(yōu)化壓縮空氣儲(chǔ)能系統(tǒng)熱力學(xué)性能的有效手段,而目前未見該方面研究報(bào)道。
工程熱物理所開展了壓縮空氣儲(chǔ)能系統(tǒng)的有限時(shí)間熱力學(xué)研究,以目前發(fā)展?jié)摿^大的先進(jìn)壓縮空氣儲(chǔ)能系統(tǒng)(圖1)為研究對(duì)象,建立了單級(jí)和多級(jí)壓縮空氣儲(chǔ)能系統(tǒng)的有限時(shí)間熱力學(xué)模型,得到了系統(tǒng)效率的解析表達(dá)式?;谠撃P停芯拷沂玖擞邢迺r(shí)間和有限尺寸對(duì)壓縮空氣儲(chǔ)能系統(tǒng)熱力學(xué)性能的影響機(jī)理,得到了壓縮空氣儲(chǔ)能系統(tǒng)的有限時(shí)間熱力學(xué)邊界(圖2),其明顯低于傳統(tǒng)的熱力學(xué)邊界。
通過定義敏感性參數(shù),揭示了有限時(shí)間和有限尺寸在一定工程約束下的最佳匹配關(guān)系。研究發(fā)現(xiàn)有限時(shí)間和有限尺寸存在強(qiáng)作用區(qū)域,而在其他區(qū)域影響較小(圖3)。在有限時(shí)間熱力學(xué)模型中引入的多級(jí)壓縮/膨脹過程的不平衡度參數(shù),通過不平衡度分析發(fā)現(xiàn):隨著各級(jí)壓比和膨脹比不平衡度的增加,系統(tǒng)效率明顯降低。壓力損失系數(shù)的平衡,而非壓力損失絕對(duì)值的平衡,可以使系統(tǒng)達(dá)到更高的效率。壓比/膨脹比與壓縮機(jī)效率/膨脹機(jī)效率的正相關(guān)匹配可以使系統(tǒng)效率較高。
研究工作得到國家重點(diǎn)研發(fā)計(jì)劃、國家自然科學(xué)基金青年項(xiàng)目、中科院前沿科學(xué)重點(diǎn)研究項(xiàng)目和中科院戰(zhàn)略性先導(dǎo)科技專項(xiàng)等的支持。
另外,據(jù)悉近日中國科學(xué)院工程熱物理所在壓縮空氣儲(chǔ)能系統(tǒng)研發(fā)取得重要進(jìn)展,10MW級(jí)壓縮空氣儲(chǔ)能系統(tǒng)蓄熱子系統(tǒng)通過國家建筑節(jié)能質(zhì)量監(jiān)督檢測(cè)中心第三方測(cè)試,測(cè)試結(jié)果為蓄熱裝置蓄熱量達(dá)68GJ,保溫4小時(shí)蓄熱效率為97.32%,保溫8小時(shí)蓄熱效率為96.56%,超過項(xiàng)目指標(biāo)要求。
蓄熱裝置是壓縮空氣儲(chǔ)能系統(tǒng)的關(guān)鍵核心部件。系統(tǒng)儲(chǔ)能時(shí),蓄熱裝置蓄積壓縮機(jī)產(chǎn)生的壓縮熱;系統(tǒng)釋能時(shí),蓄熱裝置釋放蓄積的熱量,增加膨脹機(jī)的輸出功率,提高系統(tǒng)的儲(chǔ)能效率。10MW級(jí)先進(jìn)壓縮空氣儲(chǔ)能系統(tǒng)蓄熱裝置突破了高效超臨界蓄熱換熱等關(guān)鍵技術(shù),具有儲(chǔ)熱效率高、成本低、安全穩(wěn)定等優(yōu)點(diǎn)。
相關(guān)工作得到國家自然科學(xué)基金委員會(huì)、國家重點(diǎn)研發(fā)計(jì)劃、中科院促進(jìn)科技成果轉(zhuǎn)移轉(zhuǎn)化專項(xiàng)、中科院前沿科學(xué)重點(diǎn)研究項(xiàng)目等的支持。
工程熱物理所是國內(nèi)最早開展壓縮空氣儲(chǔ)能研究的機(jī)構(gòu)之一,建立了具有完全自主知識(shí)產(chǎn)權(quán)的研發(fā)體系,先后突破了系統(tǒng)全工況設(shè)計(jì)與控制、多級(jí)高負(fù)荷壓縮機(jī)和膨脹機(jī)、高效超臨界蓄熱換熱等關(guān)鍵技術(shù)。已建成1.5MW級(jí)和10MW級(jí)先進(jìn)壓縮空氣儲(chǔ)能國家級(jí)示范系統(tǒng),并在國內(nèi)外率先開展了100MW先進(jìn)壓縮空氣儲(chǔ)能系統(tǒng)的技術(shù)研發(fā)和國家示范工程。